南京航空航天大学

2017 年硕士研究生入学考试初试试题 (A 卷)

科目代码:

919

科目名称: 电路(专业学位)

满分: 150

注意: ①认真阅读答题纸上的注意事项; ②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无 效: ③本试题纸须随答题纸一起装入试题袋中交回!

- 一、填充题(每小题 5 分, 共 40 分。请注意:答案写在答题纸上,写在试卷上无效)
- 1. 图 1.1 所示电路,则 m 点的电位 U_{m} = ______

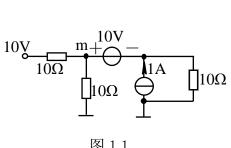


图 1.1

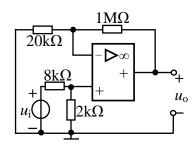
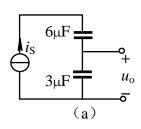
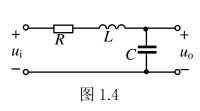
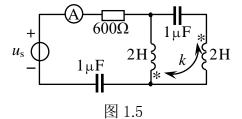



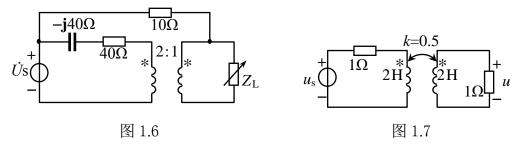
图 1.2

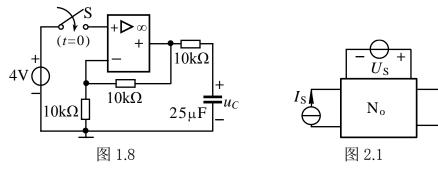

- 2. 图 1.2 所示电路,已知 \mathbf{u}_{o} = $15\cos120\pi t$ V,则输入电压 \mathbf{u}_{i} = _____
- 3. 图 1.3 (a) 所示电路,已知电流源 i_{S} 的波形如图 1.3 (b) 所示。则当 t=2s 时 $3 \mu F$ 电容 的电压 $\mathbf{u}_{0}(2) = _{_{_{_{0}}}}$ 。



 $i_{\rm S}/{\rm mA}$ (b)

图 1.3

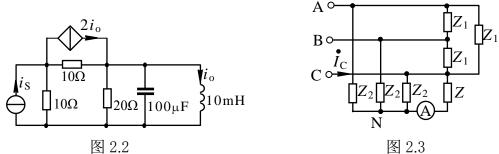

4. 图 1.4 所示正弦稳态电路,当 $\mathbf{L} = \mathbf{C} = \frac{1}{\alpha}$ 时,欲使输出电压 u_0 相位滞后输入电压 u_i 90°, 且与 u_i 有效值相等,则 $R = _____$ 。



5. 图 1.5 所示含互感电路,已知耦合系数 k=0.5,电源电压 $\mathbf{u}_{\mathrm{s}} = 100\sqrt{2}\cos 1000\mathbf{t}$ V,则电磁 式理想电流表@读数为。

6. 图 1.6 所示电路,已知 $\dot{U}_{\rm S}=20\angle30^{\circ}\,{
m V}$,若负载 $Z_{\rm L}$ 可变,则 $Z_{\rm L}$ 获得的最大功率 $P_{\rm max}=$ _____。

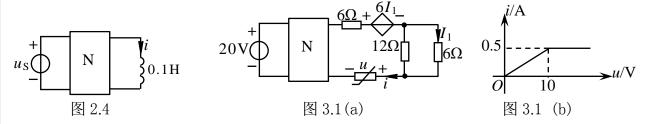
- 7. 图 1.7 所示含互感耦合电路,绘出系统函数 $H(s) = \frac{U(s)}{U_{\rm S}(s)}$ 的零极点图为_____。
- 8. 图 1.8 所示电路,t =0 时接入 4V 电压源,电容原无储能,则当 t≥0 时,u_C的表达式为_____。



二、基本计算题(每小题 10 分, 共 40 分)

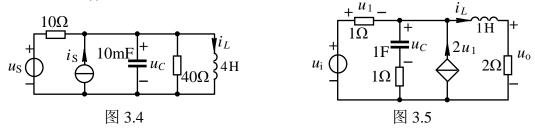
1. 图 2.1 所示电路,N_o为无源线性电阻网络,当 $U_{\rm S}$ =8V, $I_{\rm S}$ =2A 时,开路电压 $U_{\rm ab}$ =0;当 $U_{\rm S}$ =8V, $I_{\rm S}$ =0 时,开路电压 $U_{\rm ab}$ =6V 和短路电流 $I_{\rm ab}$ =6A。若当 $U_{\rm S}$ =0, $I_{\rm S}$ =4A,且 ab 间外接 5 Ω 电阻时,求电压 $U_{\rm ab}$ 。

ob


2. 图 2.2 所示正弦稳态电路,已知 $i_{\rm S}=20\sqrt{2}\cos 1000t$ A。求: (1) 电流 $i_{\rm o}$; (2) 电流源发出的有功功率 P 和无功功率 Q。

3. 图 2.3 所示三相电路,已知对称三相电源线电压 380V,对称三角形负载 Z_1 =30+j30 Ω ,对称星形负载 Z_2 =5+j5 Ω ,单相负载 Z=11 $\sqrt{2}$ \angle 45° Ω 。求:(1)电磁式电流表@读数;(2)电流 $\dot{I}_{\rm C}$;(3)三相电源发出的有功功率 P 和无功功率 Q;(4)画出用两表法测三角形负载的接线图。

4. 图 2.4 所示电路,已知电源 $\mathbf{u}_{\rm S} = \left[50\varepsilon(t) + 2\delta(t)\right]$ V,二端口网络 N 的 R 参数矩阵


$$\mathbf{R} = \begin{bmatrix} 20 & 10 \\ 10 & 15 \end{bmatrix} \Omega$$
。求: $t > 0$ 时电感支路的电流 $i(t)$ 。

- 三、综合计算题(每小题14分,共70分)
- 1. 图 3.1 (a) 所示电路中二端口网络 **N** 的 T 参数矩阵 $T = \begin{bmatrix} 2 & 12\Omega \\ 0.1S & 1.1 \end{bmatrix}$,非线性电阻伏安特性如图 3.1 (b) 所示。求:(1)电压 u;(2)电流 I_1 。
- 2. 图 3.2 所示电路,当外施正弦电压源 $u_s = 75\sqrt{2}\cos 100t$ V时,电压 u_s 与电流 i 同相位,且电路消耗功率 300W。若电源电压大小不变,而角频率为 200rad/s 时,试求在这种情况下,(1)电流 i_1 ;(2)电路功率因数 $\cos \varphi$;(3)电路消耗功率 P。

- 3. 图 3.3 所示电路,已知 $i_{S1}=9+4\sqrt{2}\cos 10t$ A, $i_{S2}=\sqrt{2}\sin 10t$ A, 求:(1)电流 i_L 及其有效值 I_L ;(2)电流源 i_{S1} 发出的平均功率 P。
- 4. 图 3.4 所示电路,(1)列出以 u_C 、 i_L 为变量的标准形式状态方程;(2)当 u_S =30V, i_S = 6 $\varepsilon(t)$ A 时,电流 $i_L(t)$, $t \ge 0$ 。

5. 图 3.5 所示电路,(1)求网络函数 $H(s) = \frac{I_L(s)}{U_1(s)}$;(2)列出以 u_C 为变量的微分方程;(3)

当 $\mathbf{u}_{i} = 2\mathbf{e}^{-3t}\varepsilon(\mathbf{t})$ V 时,计算电路的零状态响应 $\mathbf{u}_{o}(\mathbf{t})$ 。