宁波大学 2017 年博士研究生招生考试初试试题 (B卷)

科目代码: 2603 科目名称:

(答案必须写在考点提供的答题纸上)

随机过程

本证	式题可能用到的公式:							
积化和差:				和差化和	和差化积			
sin	$\alpha \cos \beta = \frac{1}{2} \left[\sin \alpha \right]$	$+\beta + \sin$	$\alpha - \beta$	sin <i>θ</i> +	s i⁄n=	$2\frac{\theta+\varphi}{\sin\theta}$ •	$\frac{\theta - \varphi}{\cos s}$	
COS	$\sin \alpha \sin \beta = \frac{1}{2} \left[\sin \alpha \right]$	$+\beta - \sin$	$\alpha - \beta$	s i n <i>θ</i> −	s i‡n=	$2 \stackrel{\theta + \varphi}{\underset{2}{\text{cos}}} \bullet$	$\frac{\theta - \varphi}{2}$	
sin	$\alpha \sin \beta = -\frac{1}{2} \Big[\cos \alpha \Big]$	$\alpha + \beta - cc$	os $\alpha - \beta$	$\cos heta$ -	$+\cos\varphi =$	$2\cos\frac{\theta+\varphi}{2}$	$\bullet \cos \frac{\theta - \varphi}{2}$	
COS	$\sin \alpha \cos \beta = \frac{1}{2} \left[\cos \alpha\right]$	$+\beta + \cos$	$\alpha - \beta$	$\cos \theta - \cos \theta$	$\cos\varphi = -2$	$\sin\frac{\theta+\varphi}{2} \cdot \mathbf{s}$	$ \sin \frac{\theta - \varphi}{2} $	
一、 填空题(前 8 题 3 分, 第 9 题 6 分, 共 30 分)								
1. 设随机变量 X 的均值为 3, 方差为 2。现定义新的随机变量为 $Y = -6X + 22$,								
	E[XY] =。							
2.	设随机过程 $X(t)=A\cos t$,- $\infty < t < \infty$ 其中 A 是随机变量,具有如下概率分布律,则 $X(t)$ 的							
	自相关函数为							
		A	1	2	3	_		
		概率	1/3	1/3	1/3	_		
3.	若平稳随机过程 $X(u)$	t) 的自相关函	函数为 $R_x(au$),则其功率	语密度 S_x	_ (ω)为	; Ŧ	
	均功率 $\frac{1}{2\pi}\int_{-\infty}^{+\infty}S_{_{x}}(\omega$			·	a.C			
4.	强度为 λ 的泊松过程的均值和协方差函数分别为和。							
5.	若线性系统的输入为高斯过程,则输出为过程。							
6.	. 白噪声的功率谱密度为。若在任意两个不同时刻对白噪声采样,则两个样本点							
	(不相关,独立,正交)。							
7.	考虑一个随机过程通过一个线性时不变系统,已知输入随机过程的自相关函数为 $R_{_x}(au)$,以							
	率谱密度为 $S_{_{X}}(\omega)$,线性时不变系统的传递函数为 $H(\omega)$,则输出随机过程的功率谱密度为							
	$S_{Y}(\omega) = \underline{\hspace{1cm}}$	o						
	第 1 页 共 3 页							

宁波大学 2017 年博士研究生招生考试初试试题 (B卷)

(答案必须写在考点提供的答题纸上)

- 8. 马氏链 $\left\{ X_n, n \geq 0 \right\}$,状态空间 $\text{I=}\{0,1,2,\ldots\}$,记初始概率 $p_i = P(X_0 = i)$,绝对概率 $p_j(n) = P(X_n = j) \text{ ,n 步转移概率 } p_{ij}^{(n)} \text{ ,则 } p_j(n) = \underline{\hspace{1cm}}$ 。
- 9. 判断以下函数是否满足自相关函数的性质,若能,求该随机过程的平均功率;若不能,请说明原因。

A.
$$R(\tau) = \frac{\sin \omega_0 \tau}{\omega_0 \tau}$$
 B. $R(\tau) = e^{-a|\tau|}, a < 0$

二、讨论及证明题(共15分)

- 1. 什么叫严平稳随机过程?什么叫宽平稳随机过程?如果高斯随机过程是宽平稳的,那么它是否是严平稳的?请说明理由。(6分)
- 2. 什么叫齐次马尔可夫链? 设 $\{X_n, n \in T\}$ 为马尔可夫链,则对任意整数 $n \geq 0, 1 \leq l < n$ 和 $i, j \in I$ (I 为状态集),试证明切普曼-科尔莫戈罗夫 (C-K) 方程 $p_{ij}^{(n)} = \sum_{k \in I} p_{ik}^{(l)} p_{kj}^{(n-l)}$ 成立。(9 分)

三、计算题(共55分)

1. 抛掷一枚硬币的试验,定义一随机过程: $X(t) = \begin{cases} \cos \pi t & H \\ t & T \end{cases}$, $t \in (-\infty, +\infty)$, 设

$$p(H) = p(T) = \frac{1}{2},$$

求(1) $\{X(t), t \in (-\infty, +\infty)\}$ 的样本函数集合;(3 分)

- (2) 一维分布函数 F(x;0), F(x;1)。(7分)
- 2. 设随机过程 $X(t)=\cos(\omega_0 t+\Phi)$, 式中 ω_0 为常数, Φ 为随机变量,
- (1) 试问什么条件下X(t)为平稳随机过程? (8分)
- (2) 在平稳随机过程的条件下讨论其各态历经性。(7分)
- 3. 某商店顾客的到来服从强度为 4 人每小时的 Poisson 过程,已知商店 9:00 开门,试求:
 - (1) 在开门半小时中, 无顾客到来的概率; (6分)

宁波大学 2017 年博士研究生招生考试初试试题 (B卷)

(答案必须写在考点提供的答题纸上)

科目代码: 2603 科目名称: 随机过程

(2) 若已知开门半小时中无顾客到来,那么在未来半小时中,仍无顾客到来的概率。(9分)

4. 设齐次马尔可夫链 $X = \{X_n, n = 0, 1, ...\}$ 的状态空间为 $S = \{0, 1, 2\}$,一步转移概率矩阵为

$$P = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix},$$

(1) 计算条件概率 $P(X_{n+3} = 0 \mid X_{n+1} = 1)$; (5分)

(2) 若 $P(X_0 = 2) = 1/2$, 计算概率 $P(X_2 = 1)$; (4分)

(3) 若马氏链 X 有初始概率分布 $\left(\frac{1}{2} \ \frac{1}{4} \ \frac{1}{4}\right)$, 试计算概率 $P(X_1 = 1, X_2 = 0)$ 。(6 分)